INDEX G320.2 Tool holder Technical Information # Note on applicability Illustrations in this publication may deviate from the product supplied. Errors and omissions due to technical progress expected. # A word on copyright This document is protected by copyright and was originally compiled in German. The duplication and distribution of this document or parts thereof is prohibited without prior consent of the copyright owner, and any violators will be prosecuted. All rights, including the right to translate, are reserved. © Copyright by INDEX-Werke GmbH & Co. KG | Technical information | | |---------------------------------------------------------------|----------------| | Tool holder selection | | | Warranty | | | Information on wear parts | Ę | | Inspection of live tool holders | Ę | | Tool holders with cooling lubricant supply | 6 | | Cooling lubricant filtering | 6 | | Cleaning live tool holders | (| | Speed ratio specifications on tool holders | 6 | | Direction of rotation specification | | | Tightening torque | | | Coolant supply | { | | Replacement seals for tool shank | | | Sealing air port | | | Tool holders with fixation | | | High-pressure unit | | | Load limits of live tools | | | Live tool holders | | | Weight distribution on turret head | | | Collision | | | Tool change on live tool holders | | | Upper tool carrier, with motorized milling spindle | | | 1 live tool station INDEX CAPTO C6 | | | Coolant adapter, INDEX CAPTO C6 | | | Coolant adapter set and socket wrench | | | Fitting/removing the coolant adapter set | | | Upper tool carrier, with motorized milling spindle | | | 1 live tool station HSK63 | | | Ultimate strength, HSK63 | | | Coolant adapter, HSK63 | | | Coolant adapter set and socket wrench | | | Replacement seals for the coolant adapter set | | | Installation of coolant adapter set | | | Tool holders with HSK shank | | | Balanced tool holders – balance quality | | | Balancing – Tool holder with tool | | | Balancing - Tool holder with tool | | | Tool magazine 1+2 | | | INDEX CAPTO C6 | | | HSK63 | | | Notes on how to use the diagram when using tool holders | | | TNOTES OF FIONS TO USE THE GIAGRAFIT WHEN USING TOOL HOUSES | 20 | | Usage information | 2′ | | Modular system of INDEX G320.2 | 2 ² | | Working area INDEX G320.2 | 22 | | Motorized milling spindle at top | | | Tool carrier at bottom left and right, VDI30 with 15 stations | 22 | ### **CONTENTS** | | Motorized milling spindle at top | | |----|-------------------------------------------------------------------|----| | | Tool carrier at bottom left, VDI30 with 15 stations | 24 | | | Motorized milling spindle at top | | | | Tool carrier at bottom right, VDI30 with 15 stations | 25 | | | Motorized milling spindle at top | | | | Tool carrier at bottom left and right, VDI40 with 12 stations | 26 | | | Motorized milling spindle at top | | | | Tool carrier at bottom left, VDI40 with 12 stations | 28 | | | Motorized milling spindle at top | | | | Tool carrier at bottom right, VDI40 with 12 stations | 29 | | Sv | vivel range INDEX G320.2 | 30 | | | Tool carrier XYZ at bottom left and right, VDI30 with 15 stations | 30 | | | Tool carrier XYZ at bottom left and right, VDI40 with 12 stations | 31 | | Pe | erformance chart INDEX G320.2 | 32 | | | Motorized milling spindle 72Nm | 32 | | | Live tools with tooling system HSK63 or CAPTO C6 | 32 | | | Motorized milling spindle 95Nm | 33 | | | Live tools with tooling system HSK63 or CAPTO C6 | 33 | | | Live tools with tooling system VDI30 | 34 | | | Tool carrier XYZ at bottom, VDI30 with 15 stations | 34 | | | Live tools with tooling system VDI40 | 35 | | | Tool carrier XY7 at hottom, VDI40 with 12 stations | 35 | ### Tool holder selection For more information, please visit our iXshop at ixshop.ixworld.com We will be happy to send you an individual offer. Just call us at +49 711 3191-9854 or send us an email to werkzeughalter@index-werke.de. ### Warranty When using tool holders that are not adjusted, tested and marked as such by INDEX, the warranty for the tool drive is void. # Information on wear parts Tool holders are wear parts requiring correct handling. In order to ensure a long service life, compressed air or coolant must not enter the gap seals of the holders. # Inspection of live tool holders Tool holders must be inspected at regular intervals (at least twice a year) for smooth running and play. The drive pinion and drive clutch of the live tool holders must be subjected to a visual inspection for damage or wear. If one of the above-mentioned defects is detected during the inspection of the tool holders, they must be returned immediately for preventive maintenance or repair to the following address: INDEX-Werke GmbH & Co. KG Plochinger Straße 92 D-73730 Esslingen Fon +49 711 3191-554 werkzeughalter@index-werke.de DIW069EN - 28.02.24 # Tool holders with cooling lubricant supply Tool holders marked with this symbol must be operated with cooling lubricant (no dry running permitted). Tool holders marked with this symbol can be converted from external cooling lubricant supply to internal cooling lubricant supply. Observe dry running capability of IC attachment! # **Cooling lubricant filtering** When using live tool holders with internal cooling lubricant supply, it is necessary to use a cooling lubricant filter system with a retained particle size \leq 50 μ m. # Cleaning live tool holders Live tool holders must never be immersed in cleaning fluid since mixing the cleaning fluid with the bearing grease will reduce the service life of the tool holders. # Speed ratio specifications on tool holders The value to be programmed is specified in the documentation and on the live tool holders (= the input in the NC program). $n_{prog} = n_{Tool} \times i$ n_{Tool} = speed at the cutting tool edge n_{PROG} = speed to be programmed i = speed ratio in the tool holder This means the speed increase or speed reduction is not specified as a fraction but as a **number**. This gives speed increase ratios as numbers less than 1. Example: i = 0.333 (corresponds to i = 1:3) i = 0.676 (corresponds to i = 1:1.48) Speed reduction ratios are numbers greater than 1. Example: i = 2 (corresponds to i = 2:1) i = 1.333 (corresponds to i = 4:3) # **Direction of rotation specification** Definition of the viewing direction. Viewing direction for determining the direction of rotation is always from behind (that is, from the drive direction) toward the shaft. On the machine side, the direction of rotation has been set by parameters such that M03 always denotes clockwise rotation and M04 counter-clockwise rotation at the interface of the drive pinion of the tool holder. The direction of rotation given on the holder therefore refers to a "change in direction within the holder". M03 and M04 are machine functions to be programmed. The arrows indicate the direction of rotation of the cutting edges. This means: ### No reversal of direction of rotation When the holder drive shaft has the **same** direction of rotation as the tool cutting edge, the clockwise direction of run must be specified by M03 (clockwise rotation). Accordingly, counter-clockwise rotation must be specified by M04. ### Reversal of direction of rotation When the holder drive shaft has the **opposite** direction of rotation as the tool cutting edge, the clockwise direction of rotation must be specified by M04. Accordingly, counter-clockwise rotation must be specified by M03. Example ### No reversal of direction of rotation DIW069EN - 28.02.24 # **Tightening torque** The tightening torques of the clamping pieces to the tool holder mounting depends on the shank diameter of the tool holder. | Shank size | Tightening torque | |------------|-------------------| | ø 20mm | 8 Nm | | ø 25mm | 20 Nm | | ø 30mm | 25 Nm | | ø 40mm | 40 Nm | # **Coolant supply** For tools with W-serration and double clamping serration. the 2nd hole for coolant supply must be closed by the end plug and the seal. The gaskets on the tool shank and the coolant bushing must be regularly checked for damages. # Replacement seals for tool shank The gaskets on the tool shank and the cooling lubricant bushing must be regularly checked for damages. | O-ring | Material number | Installation location | |----------------|-----------------------------------|---------------------------| | ø 18.77 x 1.78 | 10763730 | Shank ø 20mm | | ø 23.52 x 1.78 | ø 23.52 x 1.78 10823023 Shank ø | | | ø 28.3 x 1.78 | 10777976 | Shank ø 30mm | | ø 37.77 x 2.62 | 10066870 | Shank ø 40mm | | | | | | ø 9.75 x 1.78 | 10046965 | Cooling lubricant adapter | | ø 12.42 x 1.78 | 10824672 Cooling lubricant adapte | | # Sealing air port It must be ensured on all machines with sealing air ports that the sealing air ports in the tool carrier and in the tool holders are sealed/closed with M5x6 mm set screws. ### Tool holders with fixation Except for very few cases, all tool holders have been pre-adjusted with high precision and sealed with the INDEX V bar / TRAUB adjusting bar/ W-serration. This setting must not be changed. The INDEX V bar / TRAUB adjusting bar / W-serration ensures positional accuracy of the tool when re-inserted. The tool holders are fixed around the shank axis by pins (DIN 69880). DIN holders can be used. Double serration of the tool holders allows several uses. ### **High-pressure unit** The cooling lubricant up to 80 bar (e.g., for deep-hole drilling) is supplied through the standard cooling lubricant line. ### Load limits of live tools The drive power and torques are indicated in the performance charts. These values represent the upper limit of the calculated theoretical performance values (average values). In case of interrupted cuts, e.g., for milling, the load peaks occurring when the cutting edge enters the material may be much higher than the theoretical torque according to the performance chart. The cutter should be selected so that a cutting edge is constantly being used for cutting during the machining process. DIW069EN - 28.02.24 ### Live tool holders Only the tool located in the working position is live. The live tool holders are inserted into the mounting bores in the tool carriers just like non-live tool holders. Each turret station can accept one live tool. The motor drives the tool that is exclusively in working position. In addition, the index drive is actuated by switching using the same motor. The sealing washer (1) must be removed first. Tool carrier XYZ VDI30 with 15 stations 1 Sealing washer 10346973 2 Blanking plug 10581081 3 Mounting pin 10066228 Tool carrier XYZ VDI40 with 12 stations 1 Sealing washer 12014790 2 Blanking plug 10573819 3 Mounting pin 10682808 Before using the machine, make sure that all mounting bores without a tool have been closed with a sealing washer and that the gasket on all tool holders is not damaged. Any mounting bores not used must be closed with blanking plugs during machining processes. # Weight distribution on turret head Tool holders may have considerably different weights depending on their function and equipment. Therefore, be sure to balance the tool holders evenly around the turret head when tooling. ### **Collision** After a collision has occurred, check whether the tool carrier has been displaced. If this is the case, the tool carrier must be realigned to ensure that the drive and tool holder gears accurately engage with each other. # Tool change on live tool holders To avoid damaging or changing the adjustment of the drive train in the turret, tools must **not** be changed on the live tool holders inserted in the turret. Tools in live tool holders must be changed outside the machine. DIW069EN - 28.02.24 # Upper tool carrier, with motorized milling spindle ### 1 live tool station INDEX CAPTO C6 A live tool holder can be used on the motorized milling spindle No rotation is permitted when using blanking plugs! ### Caution! Risk of damage by ingress of cooling lubricant! Tool holders in the motorized milling spindle may only be **with** installed coolant adapters! ### Coolant adapter, INDEX CAPTO C6 ### Coolant adapter set and socket wrench Coolant adapter set INDEX CAPTO C6 10865732 Socket wrench INDEX CAPTO C6 12144844 ### Fitting/removing the coolant adapter set For removal, the socket wrench must be turned through 180°. 13 # Upper tool carrier, with motorized milling spindle ### 1 live tool station HSK63 A live tool holder can be used on the motorized milling spindle HSK63 with form T on turning tools HSK63 with form A on drilling and milling tools No rotation is permitted when using blanking plugs! ### Caution! Risk of damage by ingress of cooling lubricant! Tool holders in the motorized milling spindle may only be **with** installed coolant adapters! ### Ultimate strength, HSK63 Damage to motor milling spindle, tool holder, workpiece possible. Observe the ultimate strength of the tool systems. Ultimate strength of the tool systems according to VDMA 34181: | HSK | Torsional moment about axis of rotation [Nm] | Ultimate bending moment transverse to the flat position [Nm] | | |-----|----------------------------------------------|--------------------------------------------------------------|--| | 63 | 200 | 550 | | ### Coolant adapter, HSK63 ### Coolant adapter set and socket wrench Coolant adapter set HSK63 max. 80bar 11074450 Coolant adapter set HSK63 max. 120bar 12024087 Socket wrench HSK63 10352082 ### Replacement seals for the coolant adapter set The sealing rings on the coolant adapter set must be inspected regularly for damage. max. 80bar max. 120bar | | O-ring | Material number | Installation location | |---|------------|-----------------|------------------------------| | Α | ø 10 x 2,5 | 10272045 | HSK63 max. 80bar, face side | | В | ø 11 x 2,0 | 10401120 | HSK63 max. 80bar, inside | | Α | ø 10 x 2,5 | 10272045 | HSK63 max. 120bar, face side | ### Installation of coolant adapter set ### Tool holders with HSK shank # Balanced tool holders - balance quality When operating rotating tools in the tool spindle (milling spindle), balanced tool holders must be used. ### Caution! Rotating tool holders (including tools) must have a balance quality of G6.3 or better in relation to the respective speed used! ### Balancing - Tool holder with tool according to DIN 69893-1 as of April 2011 If balancing of the hollow taper shank is required after tools or equipment (e.g., adapters) are mounted on the shank, this should be restricted to the preferred balancing zone. ### **Balancing zone** | Nominal size | 25 | 40 | 50 | 63 | 80 | |-----------------------------------|--------|--------|--------|--------|--------| | d ₁ h10 | 25 h10 | 40 h10 | 50 h10 | 63 h10 | 80 h10 | | d ₉ max. | 20 | 34 | 42 | 53 | 68 | | f ₁ °/ _{-0,1} | 10 | 20 | 26 | 26 | 26 | | f ₂ min. | 20 | 35 | 42 | 42 | 42 | Dimensions in mm To ensure free interchangeability of the individual components of this tool mounting system, all parts (e.g., tool, tool holder, etc.) should be individually balanced. ### Balancing - Tool holder without tool according to DIN 69893-1 as of April 2011 If balancing of the hollow taper shank is required before tools or equipment (e.g., adapters) are mounted on the shank, this can be done with a balancing surface and a balancing bore. The balancing surface is used exclusively to compensate for the orientation notch. The installation space for a data carrier according to DIN 69873 is not taken into account. ### **Balancing surface** | Nominal size | 25 | 40 | 50 | 63 | 80 | |----------------|-----|-----|-----|-----|-----| | b ₄ | 3 | 6.0 | 6.0 | 6.0 | 6.0 | | | 7 | 4.0 | 4.0 | 4.0 | 4.0 | | t ₁ | 1.2 | 1.3 | 1.6 | 1.7 | 2.6 | | α | 45° | 45° | 45° | 45° | 45° | Dimensions in mm ### **Balancing bore** | Nominal size | 25 | 40 | 50 | 63 | 80 | |----------------------------|-----|-----|------|------|------| | d ₁₄ | 5.8 | 8.0 | 11.0 | 14.0 | 16.0 | | I ₁₄ | - | - | - | - | - | | $t_{\scriptscriptstyle 2}$ | 2.5 | 2.5 | 2.7 | 2.7 | 3.0 | Dimensions in mm # Tool magazine 1+2 ### **INDEX CAPTO C6** Max. weight of single tool 8kg Max. tilting torque 12Nm If tools with a diameter greater than $D_{\text{Norm}} = 70 \text{mm}$ are used, the two adjacent pockets in the tool magazine must remain empty. The maximum allowable tool weight is 8kg. Z = Position of radial fixture # Tool magazine 1+2 ### HSK63 Max. weight of single tool 8kg Max. tilting torque 12Nm $\overset{\circ}{\mathbb{I}}$ If tools with a diameter greater than $D_{\text{Norm}} = 70 \text{mm}$ are used, the two adjacent pockets in the tool magazine must remain empty. The maximum allowable tool weight is 8kg. Z = Position of radial fixture 19 # Notes on how to use the diagram when using tool holders The diagram relates to the output speed \mathbf{n} of the tool unit. The tool speed can be read directly from the diagram only if the internal speed ratio \mathbf{i} in the tool holder is 1:1. For tool holders with an internal speed ratio i \neq 1, the output speed \mathbf{n} of the tool unit to be programmed must be calculated from the required tool speed and the speed ratio i. Afterwards, the actual powers or torques can be read off or determined. Example (at 100% duty cycle): | live tool unit, tool speed n _{Tool} = 1000 rpm | | | | |-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--| | Internal speed ratio i of the tool holder | i = 4 | | | | Programmed speed n _{prog} for the drive of the unit | $n_{prog} = n_{Tool} * i = 1000 \text{ rpm} * 4 = 4000 \text{ rpm}$ | | | | Torque M_{Tool} at the output of the tool holder | Read-out M_d at speed $n_{prog} = 4000 \text{ rpm} = 1.6 \text{ Nm}$ $M_d = M_{Tool}: i$ Formula changed: $M_{Tool} = M_d * i = 1.6 \text{ Nm} * 4 = 6.4 \text{ Nm}$ | | | | Power P at the output of the tool holder ≈ Power P at the output of the setup | Read-out at 4000 rpm \rightarrow P = 0.67 kW calculated: P = 2 * π * n_{prog} * M_d P = $\frac{2 * \pi \times 4000 * 1.6 \text{ Nm}}{60 * 1000}$ = 0.67 kW | | | The transmission ratio and the technical data of each tool holder are available in our iXshop at ixshop.ixworld.com # Modular system of INDEX G320.2 - 1 Main spindle - 2 Counter spindle - 3 Lower tool carrier VDI40 XZY - 4 Lower tool carrier VDI30 XZY - 5 Motor milling spindle XZYB - 6 Tailstock - 7 Tool magazine - 8 Lower turret steady rests (optional) - 9 Shaft type workpiece handling unit (optional) - 10 Flange type workpiece handling unit (optional) # Motorized milling spindle at top Tool carrier at bottom left and right, VDI30 with 15 stations ### **Counter spindle** Motorized milling spindle at top Tool carrier at bottom left and right, VDI30 with 15 stations # Motorized milling spindle at top Tool carrier at bottom left, VDI30 with 15 stations ### Counter spindle # Motorized milling spindle at top Tool carrier at bottom right, VDI30 with 15 stations # Counter spindle # Motorized milling spindle at top Tool carrier at bottom left and right, VDI40 with 12 stations ### Counter spindle Motorized milling spindle at top Tool carrier at bottom left and right, VDI40 with 12 stations # Motorized milling spindle at top Tool carrier at bottom left, VDI40 with 12 stations ### Counter spindle # Motorized milling spindle at top Tool carrier at bottom right, VDI40 with 12 stations # Counter spindle # Swivel range INDEX G320.2 # Tool carrier XYZ at bottom left and right, VDI30 with 15 stations # Swivel range INDEX G320.2 # Tool carrier XYZ at bottom left and right, VDI40 with 12 stations # Motorized milling spindle 72Nm Live tools with tooling system HSK63 or CAPTO C6 Speed range 0-12000 rpm For information on how to use the diagram, see Chapter "Technical Information". # Motorized milling spindle 95Nm Live tools with tooling system HSK63 or CAPTO C6 Speed range 0-12000 rpm For information on how to use the diagram, see Chapter "Technical Information". DIW069EN - 28.02.24 # Live tools with tooling system VDI30 Tool carrier XYZ at bottom, VDI30 with 15 stations Speed range 0-7200 rpm For information on how to use the diagram, see Chapter "Technical Information". # Live tools with tooling system VDI40 Tool carrier XYZ at bottom, VDI40 with 12 stations Speed range 0-5400 rpm For information on how to use the diagram, see Chapter "Technical Information". 35 # INDEX-Werke GmbH & Co. KG Hahn & Tessky Plochinger Straße 92 D-73730 Esslingen Fon +49 711 3191-0 Fax +49 711 3191-587 info@index-werke.de www.index-werke.de